Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 944
Filtrar
1.
Int J Mol Sci ; 25(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38474113

RESUMO

NOTCH1-related leukoencephalopathy is a new diagnostic entity linked to heterozygous gain-of-function variants in NOTCH1 that neuroradiologically show some overlap with the inflammatory microangiopathy Aicardi-Goutières syndrome (AGS). To report a 16-year-old boy harbouring a novel NOTCH1 mutation who presented neuroradiological features suggestive of enhanced type I interferon signalling. We describe five years of follow-up and review the current literature on NOTCH1-related leukoencephalopathy. Clinical evaluation, standardised scales (SPRS, SARA, CBCL, CDI-2:P, WISCH-IV and VABS-2) and neuroradiological studies were performed, as well as blood DNA analysis. For the literature review, a search was performed on Pubmed, Scopus and Web of Science up to December 2023 using the following text word search strategy: (NOTCH1) AND (leukoencephalopathy). Our patient presents clinical features consistent with other reported cases with NOTCH1 mutations but is among the minority of patients with an onset after infancy. During the five-year follow-up, we observed an increase in the severity of spasticity and ataxia. However, at the age of 16 years, our proband is still ambulatory. As for other reported patients, he manifests psychiatric features ranging from hyperactivity during childhood to anxiety and depression during adolescence. The neuroradiological picture remained essentially stable over five years. In addition to the typical findings of leukoencephalopathy with cysts and calcifications already described, we report the presence of T2-hyperintensity and T1-hypotensity of the transverse pontine fibres, enhancement in the periventricular white matter after gadolinium administration and decreased NAA and Cho peaks in the periventricular white matter on MRS. We identified a novel heterozygous variant in NOTCH1 (c.4788_4799dup), a frame insertion located in extracellular negative regulatory region (NRR)-domain as in previously published cases. Blood interferon signalling was not elevated compared to controls. This case provides further data on a new diagnostic entity, i.e., NOTCH1-related leukoencephalopathy. By describing a standardised five-year follow-up in one case and reviewing the other patients described to date, we outline recommendations relating to monitoring in this illness, emphasising the importance of psychiatric and gastroenterological surveillance alongside neurological and neuropsychological management. Studies are needed to better understand the factors influencing disease onset and severity, which are heterogeneous.


Assuntos
Cistos , Leucoencefalopatias , Malformações do Sistema Nervoso , Masculino , Adolescente , Humanos , Encéfalo , Leucoencefalopatias/genética , Malformações do Sistema Nervoso/genética , Mutação , Imageamento por Ressonância Magnética , Receptor Notch1/genética
2.
Medicine (Baltimore) ; 103(2): e35908, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38215144

RESUMO

RATIONALE: Autosomal dominant non-syndromic intellectual disability 22 is a rare genetic disorder caused by the ZBTB18 gene. This disorder affects various parts of the body, leading to intellectual disability. It is noteworthy that only 31 cases of this disorder have been reported thus far. As the symptom severity may differ, doctors may face challenges in diagnosing it accurately. It is crucial to be familiar with this disorder's symptoms to receive proper diagnosis and essential medical care. PATIENT CONCERNS: There is a case report of a 6-year-old boy who had an unexplained thyroid abnormality, global developmental delay, and an abnormal signal of white matter in brain MRI. However, he did not have growth retardation, microcephaly, corpus callosum hypoplasia, epilepsy, or dysmorphic facial features. Clinical whole exome sequencing revealed a de novo pathogenic variant in the ZBTB18 gene (c.1207delC, p. Arg403Alafs*60), which is a previously unreported site. This variant causes the premature termination of peptide chain synthesis, leading to incomplete polypeptide chains. DIAGNOSES: Autosomal dominant non-syndromic intellectual and disability 22 syndrome and thyroid dysfunction. INTERVENTIONS: Rehabilitation training. OUTCOMES: The individual is experiencing difficulty with their motor skills, appearing clumsier while running. He struggles with expressing themselves and forming complete sentences, relying mostly on gestures and pointing. LESSONS: The clinical presentations of mental retardation, autosomal dominant, type 22 (MRD22) are complicated and varied. Although early diagnosis can be made according to typical clinical symptoms, whole exome sequencing is necessary for diagnosing MRD22, as our study indicates.


Assuntos
Deficiência Intelectual , Malformações do Sistema Nervoso , Criança , Humanos , Masculino , Anormalidades Múltiplas/genética , Deleção Cromossômica , Cromossomos Humanos Par 1 , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Microcefalia/genética , Malformações do Sistema Nervoso/genética , Proteínas Repressoras/genética
3.
Stem Cell Res ; 74: 103299, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38181636

RESUMO

Mutations in Adenosine deaminase acting on RNA 1 (ADAR1) gene encoding RNA editing enzyme ADAR1 results in the neuroinflammatory leukodystrophy Aicardi Goutières Syndrome (AGS). AGS is an early onset leukoencephalopathy with an exacerbated interferon response leading to neurological regression with intellectual disability, spasticity, and motor deficits. We have generated three induced pluripotent stem cell (iPSC) lines from peripheral blood mononuclear cells (PBMCs) of individuals with ADAR1G1007R mutation. The generated iPSCs were investigated to confirm a normal karyotype, pluripotency, and trilineage differentiation potential. The reprogrammed iPSCs will allow us to model AGS, dissect the cellular mechanisms and testing different treatment targets.


Assuntos
Doenças Autoimunes do Sistema Nervoso , Células-Tronco Pluripotentes Induzidas , Malformações do Sistema Nervoso , Humanos , Doenças Autoimunes do Sistema Nervoso/genética , Doenças Autoimunes do Sistema Nervoso/patologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Leucócitos Mononucleares/metabolismo , Mutação , Malformações do Sistema Nervoso/genética , Malformações do Sistema Nervoso/patologia
4.
Biochemistry ; 63(3): 282-293, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38190734

RESUMO

The innate immune system relies on molecular sensors to detect distinctive molecular patterns, including viral double-stranded RNA (dsRNA), which triggers responses resulting in apoptosis and immune infiltration. Adenosine Deaminases Acting on RNA (ADARs) catalyze the deamination of adenosine (A) to inosine (I), serving as a mechanism to distinguish self from non-self RNA and prevent aberrant immune activation. Loss-of-function mutations in the ADAR1 gene are one cause of Aicardi Goutières Syndrome (AGS), a severe autoimmune disorder in children. Although seven out of the eight AGS-associated mutations in ADAR1 occur within the catalytic domain of the ADAR1 protein, their specific effects on the catalysis of adenosine deamination remain poorly understood. In this study, we carried out a biochemical investigation of four AGS-causing mutations (G1007R, R892H, K999N, and Y1112F) in ADAR1 p110 and truncated variants. These studies included adenosine deamination rate measurements with two different RNA substrates derived from human transcripts known to be edited by ADAR1 p110 (glioma-associated oncogene homologue 1 (hGli1), 5-hydroxytryptamine receptor 2C (5-HT2cR)). Our results indicate that AGS-associated mutations at two amino acid positions directly involved in stabilizing the base-flipped conformation of the ADAR-RNA complex (G1007R and R892H) had the most detrimental impact on catalysis. The K999N mutation, positioned near the RNA binding interface, altered catalysis contextually. Finally, the Y1112F mutation had small effects in each of the assays described here. These findings shed light on the differential effects of disease-associated mutations on adenosine deamination by ADAR1, thereby advancing our structural and functional understanding of ADAR1-mediated RNA editing.


Assuntos
Adenosina Desaminase , Doenças Autoimunes do Sistema Nervoso , Malformações do Sistema Nervoso , Criança , Humanos , Adenosina Desaminase/genética , Domínio Catalítico , Mutação , RNA de Cadeia Dupla , Doenças Autoimunes do Sistema Nervoso/genética , Malformações do Sistema Nervoso/genética
5.
Clin Genet ; 105(2): 140-149, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37904618

RESUMO

DDX3X is a multifunctional ATP-dependent RNA helicase involved in several processes of RNA metabolism and in other biological pathways such as cell cycle control, innate immunity, apoptosis and tumorigenesis. Variants in DDX3X have been associated with a developmental disorder named intellectual developmental disorder, X-linked syndromic, Snijders Blok type (MRXSSB, MIM #300958) or DDX3X neurodevelopmental disorder (DDX3X-NDD). DDX3X-NDD is mainly characterized by intellectual disability, brain abnormalities, hypotonia and behavioral problems. Other common findings include gastrointestinal abnormalities, abnormal gait, speech delay and microcephaly. DDX3X-NDD is predominantly found in females who carry de novo variants in DDX3X. However, hemizygous pathogenic DDX3X variants have been also found in males who inherited their variants from unaffected mothers. To date, more than 200 patients have been reported in the literature. Here, we describe 34 new patients with a variant in DDX3X and reviewed 200 additional patients previously reported in the literature. This article describes 34 additional patients to those already reported, contributing with 25 novel variants and a deep phenotypic characterization. A clinical review of our cohort of DDX3X-NDD patients is performed comparing them to those previously published.


Assuntos
Encefalopatias , Deficiência Intelectual , Malformações do Sistema Nervoso , Transtornos do Neurodesenvolvimento , Masculino , Feminino , Humanos , Transtornos do Neurodesenvolvimento/genética , Deficiência Intelectual/patologia , Hipotonia Muscular/genética , Malformações do Sistema Nervoso/genética , RNA Helicases DEAD-box/genética
6.
J Med Genet ; 61(3): 244-249, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-37857482

RESUMO

BACKGROUND: The neurodevelopmental prognosis of anomalies of the corpus callosum (ACC), one of the most frequent brain malformations, varies extremely, ranging from normal development to profound intellectual disability (ID). Numerous genes are known to cause syndromic ACC with ID, whereas the genetics of ACC without ID remains poorly deciphered. METHODS: Through a collaborative work, we describe here ZEB1, a gene previously involved in an ophthalmological condition called type 3 posterior polymorphous corneal dystrophy, as a new dominant gene of ACC. We report a series of nine individuals with ACC (including three fetuses terminated due to ACC) carrying a ZEB1 heterozygous loss-of-function (LoF) variant, identified by exome sequencing. RESULTS: In five cases, the variant was inherited from a parent with a normal corpus callosum, which illustrates the incomplete penetrance of ACC in individuals with an LoF in ZEB1. All patients reported normal schooling and none of them had ID. Neuropsychological assessment in six patients showed either normal functioning or heterogeneous cognition. Moreover, two patients had a bicornuate uterus, three had a cardiovascular anomaly and four had macrocephaly at birth, which suggests a larger spectrum of malformations related to ZEB1. CONCLUSION: This study shows ZEB1 LoF variants cause dominantly inherited ACC without ID and extends the extraocular phenotype related to this gene.


Assuntos
Deficiência Intelectual , Malformações do Sistema Nervoso , Recém-Nascido , Feminino , Humanos , Corpo Caloso , Agenesia do Corpo Caloso/genética , Malformações do Sistema Nervoso/genética , Deficiência Intelectual/genética , Cognição , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética
7.
Am J Med Genet A ; 194(5): e63510, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38135344

RESUMO

Aicardi-Goutières syndrome (AGS) is a genetic interferonopathy classically characterized by early onset of severe neurologic injury with basal ganglia calcifications, white matter abnormalities, and progressive cerebral atrophy, along with lymphocytosis and raised interferon alpha (INFα) in the cerebrospinal fluid (CSF). Here, we report a 31/2 year-old patient born with prenatal onset AGS, first manifesting as intra-uterine growth retardation. Cranial ultrasonography and cerebral MRI revealed ventriculomegaly and periventricular and basal ganglia calcifications, along with cerebral atrophy. Perinatal infections and known metabolic disorders were excluded. Both CSF lymphocytosis and raised INFα were present. Molecular analysis disclosed two already described compound heterozygous pathogenic variants in TREX1 (c. 309dup, p.(Thr104Hisfs*53) and c. 506G > A, p.(Arg169His)). The evolution was marked by severe global developmental delay with progressive microcephaly. Promptly, the patient developed irritability, quadri-paretic dyskinetic movements, and subsequently tonic seizures. Sensorineural hearing loss was detected as well as glaucoma. Initially, he was symptomatically treated with trihexyphenidyl followed by levetiracetam and topiramate. At age 22 months, baricitinib (0.4 mg/kg/day) was introduced, leading to normal serum INFα levels. Clinically, dyskinetic movements significantly decreased as well as irritability and sleep disturbance. We confirmed that baricitinib was a useful treatment with no major side effect.


Assuntos
Doenças Autoimunes do Sistema Nervoso , Azetidinas , Doenças dos Gânglios da Base , Calcinose , Inibidores de Janus Quinases , Linfocitose , Malformações do Sistema Nervoso , Purinas , Pirazóis , Sulfonamidas , Masculino , Gravidez , Feminino , Humanos , Lactente , Linfocitose/líquido cefalorraquidiano , Linfocitose/genética , Malformações do Sistema Nervoso/tratamento farmacológico , Malformações do Sistema Nervoso/genética , Doenças dos Gânglios da Base/diagnóstico , Doenças dos Gânglios da Base/tratamento farmacológico , Doenças dos Gânglios da Base/genética , Doenças Autoimunes do Sistema Nervoso/tratamento farmacológico , Doenças Autoimunes do Sistema Nervoso/genética , Calcinose/genética , Atrofia
8.
Int J Mol Sci ; 24(21)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37958557

RESUMO

In this study, we report a novel splice variant in the TRA2B gene identified in a patient presenting with seizures and neurodevelopmental delay. This paper represents the second investigation of pathogenic variants in the TRA2B gene in humans, reaffirming the conclusions of the initial study and underscoring the importance of this research. Comprehensive genetic testing, including whole genome sequencing, Sanger sequencing, and mRNA analysis, was performed on the proband and her parents. The proband harbored a de novo c.170+1G>A variant in the RS1 domain of Tra2ß, which was confirmed to be pathogenic through mRNA analysis, resulting in exon 2 deletion and a frameshift (p.Glu13Valfs*2). The clinical presentation of the patient was consistent with phenotypes described in one of the previous studies. These findings contribute to the dissemination and reinforcement of prior discoveries in the context of TRA2B-related syndrome and highlight the need for further investigation into the functional consequences and underlying pathogenic mechanisms associated with TRA2B mutations.


Assuntos
Mutação da Fase de Leitura , Malformações do Sistema Nervoso , Humanos , Feminino , Mutação , Éxons/genética , RNA Mensageiro/genética , Malformações do Sistema Nervoso/genética , Convulsões/genética , Fatores de Processamento de Serina-Arginina/genética , Proteínas do Tecido Nervoso/genética
9.
Am J Hum Genet ; 110(12): 2112-2119, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37963460

RESUMO

Over two dozen spliceosome proteins are involved in human diseases, also referred to as spliceosomopathies. WW domain-binding protein 4 (WBP4) is part of the early spliceosomal complex and has not been previously associated with human pathologies in the Online Mendelian Inheritance in Man (OMIM) database. Through GeneMatcher, we identified ten individuals from eight families with a severe neurodevelopmental syndrome featuring variable manifestations. Clinical manifestations included hypotonia, global developmental delay, severe intellectual disability, brain abnormalities, musculoskeletal, and gastrointestinal abnormalities. Genetic analysis revealed five different homozygous loss-of-function variants in WBP4. Immunoblotting on fibroblasts from two affected individuals with different genetic variants demonstrated a complete loss of protein, and RNA sequencing analysis uncovered shared abnormal splicing patterns, including in genes associated with abnormalities of the nervous system, potentially underlying the phenotypes of the probands. We conclude that bi-allelic variants in WBP4 cause a developmental disorder with variable presentations, adding to the growing list of human spliceosomopathies.


Assuntos
Deficiência Intelectual , Malformações do Sistema Nervoso , Transtornos do Neurodesenvolvimento , Humanos , Spliceossomos/genética , Transtornos do Neurodesenvolvimento/genética , Deficiência Intelectual/genética , Deficiência Intelectual/complicações , Síndrome , Malformações do Sistema Nervoso/genética , Perda de Heterozigosidade , Fenótipo
10.
Pediatr Neurol ; 149: 137-140, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37879138

RESUMO

Lissencephaly with cerebellar hypoplasia (LCH) is a rare variant form of lissencephaly, its distinctive neuroradiological phenotype being an important investigation clue regarding the potential involved genes, including variants in RELN gene. We report on a case of LCH whose clinical and neuroradiological features led to the identification of a homozygous pathogenic variant in RELN gene that has not been previously reported in the scientific literature.


Assuntos
Lisencefalia , Malformações do Sistema Nervoso , Humanos , Malformações do Sistema Nervoso/diagnóstico por imagem , Malformações do Sistema Nervoso/genética , Lisencefalia/diagnóstico por imagem , Lisencefalia/genética , Homozigoto , Mutação/genética
11.
Neural Dev ; 18(1): 6, 2023 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-37805506

RESUMO

BACKGROUND: CASK-related neurodevelopmental disorders are untreatable. Affected children show variable severity, with microcephaly, intellectual disability (ID), and short stature as common features. X-linked human CASK shows dosage sensitivity with haploinsufficiency in females. CASK protein has multiple domains, binding partners, and proposed functions at synapses and in the nucleus. Human and Drosophila CASK show high amino-acid-sequence similarity in all functional domains. Flies homozygous for a hypomorphic CASK mutation (∆18) have motor and cognitive deficits. A Drosophila genetic model of CASK-related disorders could have great scientific and translational value. METHODS: We assessed the effects of CASK loss of function on morphological phenotypes in Drosophila using established genetic, histological, and primary neuronal culture approaches. NeuronMetrics software was used to quantify neurite-arbor morphology. Standard nonparametric statistics methods were supplemented by linear mixed effects modeling in some cases. Microfluidic devices of varied dimensions were fabricated and numerous fluid-flow parameters were used to induce oscillatory stress fields on CNS tissue. Dissociation into viable neurons and neurite outgrowth in vitro were assessed. RESULTS: We demonstrated that ∆18 homozygous flies have small brains, small heads, and short bodies. When neurons from developing CASK-mutant CNS were cultured in vitro, they grew small neurite arbors with a distinctive, quantifiable "bushy" morphology that was significantly rescued by transgenic CASK+. As in humans, the bushy phenotype showed dosage-sensitive severity. To overcome the limitations of manual tissue trituration for neuronal culture, we optimized the design and operation of a microfluidic system for standardized, automated dissociation of CNS tissue into individual viable neurons. Neurons from CASK-mutant CNS dissociated in the microfluidic system recapitulate the bushy morphology. Moreover, for any given genotype, device-dissociated neurons grew larger arbors than did manually dissociated neurons. This automated dissociation method is also effective for rodent CNS. CONCLUSIONS: These biological and engineering advances set the stage for drug discovery using the Drosophila model of CASK-related disorders. The bushy phenotype provides a cell-based assay for compound screening. Nearly a dozen genes encoding CASK-binding proteins or transcriptional targets also have brain-development mutant phenotypes, including ID. Hence, drugs that improve CASK phenotypes might also benefit children with disorders due to mutant CASK partners.


Assuntos
Deficiência Intelectual , Microcefalia , Malformações do Sistema Nervoso , Animais , Humanos , Drosophila , Descoberta de Drogas , Deficiência Intelectual/genética , Microcefalia/genética , Modelos Genéticos , Mutação , Malformações do Sistema Nervoso/genética , Neurônios/fisiologia , Tamanho do Órgão
12.
Rheum Dis Clin North Am ; 49(4): 741-756, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821193

RESUMO

This review will discuss when clinicians should consider evaluating for Type I interferonopathies, review clinical phenotypes and molecular defects of Type I interferonopathies, and discuss current treatments.


Assuntos
Doenças Autoimunes do Sistema Nervoso , Interferon Tipo I , Malformações do Sistema Nervoso , Humanos , Interferon Tipo I/genética , Malformações do Sistema Nervoso/genética
13.
Eur J Med Genet ; 66(11): 104853, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37758169

RESUMO

OBJECTIVE: Heterozygous variations in microtubule-associated serine/threonine kinase 1 gene (MAST1) were recently described in the mega-corpus-callosum syndrome with cerebellar hypoplasia and cortical malformations (MCCCHCM, MIM 618273), revealing the importance of the MAST genes family in global brain development. To date, patients with MAST1 gene mutations were mostly young children with central nervous system involvement, impaired motor function, speech delay, and brain magnetic resonance imaging (MRI) abnormalities. Here, we report the clinical presentation of an adult patient with a rare and de novo MAST1 mutation with central hypogonadism that could extend this phenotype. METHODS: A panel of 333 genes involved in epilepsy or cortical development was sequenced in the described patient. Routine biochemical analyses were performed, and hormonal status was investigated. RESULT: We report a 22-year-old man with a de novo, heterozygous missense variant in MAST1 (Chr19(GRCh37):g.12975903G > A, NP_055790.1:p.Gly517Ser). He presented with an epileptic encephalopathy associated with cerebral malformations, short stature, hypogonadotropic hypogonadism, and secondary osteopenia. CONCLUSION: This is the first patient with MAST1 gene mutation described with central hypogonadism, which may be associated with the phenotype of MCCCHCM syndrome.


Assuntos
Hipogonadismo , Leucoencefalopatias , Malformações do Sistema Nervoso , Criança , Masculino , Humanos , Pré-Escolar , Adulto Jovem , Adulto , Malformações do Sistema Nervoso/genética , Leucoencefalopatias/genética , Mutação , Microtúbulos , Hipogonadismo/genética
14.
J Child Neurol ; 38(8-9): 518-527, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37499181

RESUMO

Background: Aicardi-Goutières syndrome (AGS) is a rare genetic disorder characterized by a spectrum of motor abilities. While the Aicardi-Goutières syndrome severity score favors severely impacted individuals, there is an unmet need to define tools measuring function across the Aicardi-Goutières syndrome spectrum as potential outcome assessments for future clinical trials. Methods: Gross Motor Function Measure-88 (GMFM-88) and AGS Severity Scale were administered in individuals affected by Aicardi-Goutières syndrome (n = 71). We characterized the performance variability by genotype. Derived versions of the GMFM-88, including the GMFM-66, GMFM-66 item set (GMFM-66IS), and GMFM-66 Basal&Ceiling (GMFM-66BC) were calculated. The Aicardi-Goutières syndrome cohort was divided into severe (AGS Severity Scale score <4) or attenuated (≥4). Performance on the AGS Severity Scale highly correlated with total GMFM-88 scores (Spearman Correlation: R = 0.91). To assess variability of the GMFM-88 within genotypic subcohorts, interquartile ranges (IQRs) were compared. Results: GMFM-88 performance in the TREX1 cohort had least variability while the SAMHD1 cohort had the largest IQR (4.23 vs 81.8). Floor effect was prominent, with most evaluations scoring below 20% (n = 46, 64.79%), particularly in TREX1- and RNASEH2-cohorts. Performance by the GMFM-66, GMFM-66IS, and GMFM-66BC highly correlated with the full GMFM-88. The Aicardi-Goutières syndrome population represents a broad range of gross motor skills. Conclusions: This work identified the GMFM-88 as a potential clinical outcome assessment in subsets of the Aicardi-Goutières syndrome population but underscores the need for additional validation of outcome measures reflective of the diverse gross motor function observed in this population, including low motor function. When time is limited by resources or patient endurance, shorter versions of the GMFM-88 may be a reasonable alternative.


Assuntos
Doenças Autoimunes do Sistema Nervoso , Malformações do Sistema Nervoso , Humanos , Malformações do Sistema Nervoso/genética , Doenças Autoimunes do Sistema Nervoso/genética , Genótipo , Mutação
15.
Scand J Immunol ; 98(4): e13314, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37515439

RESUMO

Aicardi-Goutières syndrome (AGS) is a rare monogenic autoimmune disease that primarily affects the brains of children patients. Its main clinical features include encephalatrophy, basal ganglia calcification, leukoencephalopathy, lymphocytosis and increased interferon-α (IFN-α) levels in the patient's cerebrospinal fluid (CSF) and serum. AGS may be caused by mutations in any one of nine genes (TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR1, IFIH1, LSM11 and RNU7-1) that result in accumulation of self-nucleic acids in the cytoplasm or aberrant sensing of self-nucleic acids. This triggers overproduction of type I interferons (IFNs) and subsequently causes AGS, the prototype of type I interferonopathies. This review describes the discovery history of AGS with various genotypes and provides the latest knowledge of clinical manifestations and causative genes of AGS. The relationship between AGS and type I interferonopathy and potential therapeutic methods for AGS are also discussed in this review.


Assuntos
Doenças Autoimunes do Sistema Nervoso , Interferon Tipo I , Malformações do Sistema Nervoso , Criança , Humanos , Malformações do Sistema Nervoso/genética , Doenças Autoimunes do Sistema Nervoso/genética , Interferon-alfa/genética , Encéfalo , Interferon Tipo I/genética , Mutação
16.
Am J Med Genet A ; 191(10): 2656-2663, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37466007

RESUMO

Biallelic pathogenic variants in LAMB1 have been associated with autosomal recessive lissencephaly 5 (OMIM 615191), which is characterized by brain malformations (cobblestone lissencephaly, hydrocephalus), developmental delay, and epilepsy. Pathogenic variants in LAMB1 are rare, with only 11 pathogenic variants and 11 patients reported to date. Here, we report on a 6-year-old patient from a consanguineous family with profound developmental delay, microcephaly, and a history of a perinatal cerebrovascular event. Brain magnetic resonance imaging (MRI) showed cerebellar cystic defects, signal intensity abnormalities, and a hypoplastic corpus callosum. Trio-exome analysis revealed a homozygous in-frame deletion of Exons 23 and 24 of LAMB1 affecting 104 amino acids including the epidermal growth factor (EGF)-like units 11 and 12 in Domain III. To our knowledge, this is the first reported in-frame deletion in LAMB1. Our findings broaden the clinical and molecular spectrum of LAMB1-associated syndromes.


Assuntos
Microcefalia , Malformações do Sistema Nervoso , Gravidez , Feminino , Humanos , Criança , Malformações do Sistema Nervoso/genética , Encéfalo/anormalidades , Microcefalia/genética , Deleção de Sequência/genética , Homozigoto , Laminina
17.
J Clin Immunol ; 43(6): 1436-1447, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37171742

RESUMO

The paradigm type I interferonopathy Aicardi-Goutières syndrome (AGS) is most typically characterized by severe neurological involvement. AGS is considered an immune-mediated disease, poorly responsive to conventional immunosuppression. Premised on a chronic enhancement of type I interferon signaling, JAK1/2 inhibition has been trialed in AGS, with clear improvements in cutaneous and systemic disease manifestations. Contrastingly, treatment efficacy at the level of the neurological system has been less conclusive. Here, we report our real-word approach study of JAK1/2 inhibition in 11 patients with AGS, providing extensive assessments of clinical and radiological status; interferon signaling, including in cerebrospinal fluid (CSF); and drug concentrations in blood and CSF. Over a median follow-up of 17 months, we observed a clear benefit of JAK1/2 inhibition on certain systemic features of AGS, and reproduced results reported using the AGS neurologic severity scale. In contrast, there was no change in other scales assessing neurological status; using the caregiver scale, only patient comfort, but no other domain of everyday-life care, was improved. Serious bacterial infections occurred in 4 out of the 11 patients. Overall, our data lead us to conclude that other approaches to treatment are urgently required for the neurologic features of AGS. We suggest that earlier diagnosis and adequate central nervous system penetration likely remain the major factors determining the efficacy of therapy in preventing irreversible brain damage, implying the importance of early and rapid genetic testing and the consideration of intrathecal drug delivery.


Assuntos
Doenças Autoimunes do Sistema Nervoso , Malformações do Sistema Nervoso , Humanos , Doenças Autoimunes do Sistema Nervoso/diagnóstico , Doenças Autoimunes do Sistema Nervoso/tratamento farmacológico , Doenças Autoimunes do Sistema Nervoso/genética , Malformações do Sistema Nervoso/diagnóstico , Malformações do Sistema Nervoso/tratamento farmacológico , Malformações do Sistema Nervoso/genética , Transdução de Sinais , Testes Genéticos
18.
Ultrasound Obstet Gynecol ; 62(5): 721-726, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37204857

RESUMO

OBJECTIVE: To evaluate the utility of prenatal exome sequencing (pES) in fetuses with central nervous system (CNS) abnormalities. METHODS: This was a retrospective cohort study of fetuses identified to have CNS abnormality on prenatal ultrasound and/or magnetic resonance imaging. All fetuses were first analyzed by chromosomal microarray analysis (CMA). Fetuses with a confirmed aneuploidy or causal pathogenic copy-number variant (CNV) on CMA did not undergo pES analysis and were excluded, while those with a negative CMA result were offered pES testing. RESULTS: Of the 167 pregnancies included in the study, 42 (25.1%) were identified to have a pathogenic or likely pathogenic (P/LP) variant. The diagnostic rate was significantly higher in fetuses with a non-isolated CNS abnormality than in those with a single CNS abnormality (35.7% (20/56) vs 14.5% (8/55); P = 0.010). Moreover, when a fetus had three or more CNS abnormalities, the positive diagnostic rate increased to 42.9%. A total of 25/42 (59.5%) cases had de-novo mutations, while, in the remaining cases, mutations were inherited and carried a significant risk of recurrence. Families whose fetus carried a P/LP mutation were more likely to choose advanced pregnancy termination than those with a variant of uncertain significance, secondary/incidental finding or negative pES result (83.3% (25/30) vs 41.3% (38/92); P < 0.001). CONCLUSION: pES improved the identification of genetic disorders in fetuses with CNS anomalies without a chromosomal abnormality or CNV identified on CMA, regardless of the number of CNS anomalies and presence of extracranial abnormality. We also demonstrated that pES findings can significantly impact parental decision-making. © 2023 International Society of Ultrasound in Obstetrics and Gynecology.


Assuntos
Doenças do Sistema Nervoso Central , Malformações do Sistema Nervoso , Feminino , Gravidez , Humanos , Diagnóstico Pré-Natal/métodos , Sequenciamento do Exoma , Estudos Retrospectivos , Feto/diagnóstico por imagem , Feto/anormalidades , Aberrações Cromossômicas , Malformações do Sistema Nervoso/diagnóstico por imagem , Malformações do Sistema Nervoso/genética , Análise em Microsséries/métodos , Ultrassonografia Pré-Natal/métodos
19.
Am J Med Genet A ; 191(8): 2204-2208, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37194129

RESUMO

Alzahrani-Kuwahara syndrome (ALKUS) is a neurodevelopmental disorder that includes microcephaly, facial dysmorphism, and variable congenital and eye malformations. We present the first case of ALKUS described in the European population caused by two variants in compound heterozygosity of the gene SMG8. We present a patient with two variants in compound heterozygosity in the SMG8 gene identified by in trio whole exome sequencing based in next generation sequencing (xGEN® Exome Research Panel, Nextseq550 platform). International case reporting (CARE) criteria were followed. Patient written consent was obtained through legal responsible persons. We describe a 27-year-old male, the second child of a healthy and non-consanguineous couple, whose genetic analysis showed two variants in compound heterozygosity, c.1159C > T (p.Arg387*) and c.2407del (p.Arg803Glyfs*10), in the SMG8 gene, both classified as likely pathogenic. As described by Fatema Alzahrani et al. in a series of eight patients, our patient had global developmental delay with impaired intellectual development, facial dysmorphism, and limb disproportion. Additionally, our patient had lower limb spastic paraparesis, marked osteotendinous hyperreflexia with extensor plantar response bilaterally and paretic gait. Our patient resembles the phenotype described by Fatema Alzahrani et al., however, he is the first patient with two SMG8 deleterious variants in compound heterozygosity, and the first to exhibit pyramidal signs and gait disorder as part of the phenotype.


Assuntos
Deficiência Intelectual , Microcefalia , Malformações do Sistema Nervoso , Transtornos do Neurodesenvolvimento , Masculino , Humanos , Microcefalia/diagnóstico , Microcefalia/genética , Transtornos do Neurodesenvolvimento/genética , Malformações do Sistema Nervoso/genética , Fenótipo , Síndrome , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética
20.
Genes (Basel) ; 14(5)2023 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-37239392

RESUMO

Peptidyl-tRNA hydrolase 2 (PTRH2) is an evolutionarily highly conserved mitochondrial protein. The biallelic mutations in the PTRH2 gene have been suggested to cause a rare autosomal recessive disorder characterized by an infantile-onset multisystem neurologic endocrine and pancreatic disease (IMNEPD). Patients with IMNEPD present varying clinical manifestations, including global developmental delay associated with microcephaly, growth retardation, progressive ataxia, distal muscle weakness with ankle contractures, demyelinating sensorimotor neuropathy, sensorineural hearing loss, and abnormalities of thyroid, pancreas, and liver. In the current study, we conducted an extensive literature review with an emphasis on the variable clinical spectrum and genotypes in patients. Additionally, we reported on a new case with a previously documented mutation. A bioinformatics analysis of the various PTRH2 gene variants was also carried out from a structural perspective. It appears that the most common clinical characteristics among all patients include motor delay (92%), neuropathy (90%), distal weakness (86.4%), intellectual disability (84%), hearing impairment (80%), ataxia (79%), and deformity of head and face (~70%). The less common characteristics include hand deformity (64%), cerebellar atrophy/hypoplasia (47%), and pancreatic abnormality (35%), while the least common appear to be diabetes mellitus (~30%), liver abnormality (~22%), and hypothyroidism (16%). Three missense mutations were revealed in the PTRH2 gene, the most common one being Q85P, which was shared by four different Arab communities and was presented in our new case. Moreover, four different nonsense mutations in the PTRH2 gene were detected. It may be concluded that disease severity depends on the PTRH2 gene variant, as most of the clinical features are manifested by nonsense mutations, while only the common features are presented by missense mutations. A bioinformatics analysis of the various PTRH2 gene variants also suggested the mutations to be deleterious, as they seem to disrupt the structural confirmation of the enzyme, leading to loss of stability and functionality.


Assuntos
Hidrolases de Éster Carboxílico , Ataxia Cerebelar , Proteínas Mitocondriais , Malformações do Sistema Nervoso , Humanos , Ataxia , Ataxia Cerebelar/genética , Códon sem Sentido , Mutação , Malformações do Sistema Nervoso/genética , Hidrolases de Éster Carboxílico/genética , Proteínas Mitocondriais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...